

ANANDALAYA

Weekly Test 2 Class : XI

Subject: CHEMISTRY M.M: 25
Date : 13/10/2015 Time: 1 Hour

Q1 Q2						
02	central atom: H ₂ O, SF ₆ , BF ₃ , CH ₄ .	1				
Q3						
Q4	A student gave the following resonating forms of formaldehyde					
	I II III					
	Which one is least significant and why?					
Q5	Which out of NH ₃ and NF ₃ has higher dipole moment and why?	2				
Q6	Account for the following:	2				
	(a) NF ₃ is pyramidal while BF ₃ is triangular planar.					
	(b) Bond angle in H ₂ O is larger than bond angle in H ₂ S.					
Q7	What is the formal charge on various atoms in NO_2^- ion.	2				
Q8	Write the favourable conditions for the formation of ionic bond.	3				
Q9	Name different types of hybridization involving s and p-orbitals.	3				
	Arrange these orbitals in order of increasing	_				
	(a) Bond length (b) s- character					
Q10	Apply VSEPR model to predict the shapes of :	3				
QIO	ASF ₃ , PH ₃ , BeCl ₂	3				
Q11	Compare the relative stability of the following species and indicate	5				
ŲII		3				
	their magnetic properties:					
	O_2 , O_2^+ , O_2^- (super oxide), O_2^{2-} (peroxide)					

Marking Scheme

WT2

Classs XI (Chemistry)

Q1	НСООН.	1				
Q2	SF ₆ , H ₂ O, CH ₄ , BF ₃ .					
Q3	H3O+					
Q4	Str III bec + charge is on electronegative atom					
Q5	NH ₃ bec three N-H bonds reinforce the lone pair moment.					
Q6	(a) NF3 – one lone pair and three bond pairs while in BF3 no lone					
	pair.					
	(b) O is more electronegative than S					
Q7	N=0, O=0 and -	2				
Q8	(i) 1Low IE	3				
	(ii) More –ve electron gain enthalpy					
	(iii) High lattice enthalpy					
Q9	sp, sp ² ,sp ³ (a) sp ³ , sp ² , sp (b) sp ³ , sp ² , sp					
Q10	Trigonal bipyramidal, Pyramidal, Linear	3				
Q11	EC and BO	2				
	relative stability $O_2^+(2.5)$, $O_2(2.0)$, $O_2^-(1.5)$, $O_2^{-2}(1.0)$					
	magnetic properties					
	O ₂ ⁺ (2.5) Paramagnetic					
	$O_2(2.0)$ Paramagnetic					
	O ₂ (1.5) Paramagnetic					
	O ₂ ² -(1.0) Diamagnetic					

BLUE PRINT FOR WT 2 -2015-CLASS 11

CHAPTER					
	MARKS	1 M	2 M	3 M	5M
Chemical bonding and molecular structure	25	3	4	3	1

APPLICATION 8(32%) UNDERSTANDING 7(28%) KNOWLEDGE3 (12%) HOTS 2(8%) EVALUATION AND SYNTHESIS 5(20%)